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In this paper, the accuracy of the Craig–Bamptonmethod, one of the most widely used component mode synthesis

methods, is improved. Considering the higher-order effect of residual modes that are simply truncated in the Craig–

Bampton method, the original finite element model can be more accurately reduced. In this formulation, unknown

eigenvalues are considered as additional generalized coordinates, which can be eliminated by employing the concept

of system equivalent reduction expansion process. The new component mode synthesis is named the higher-order

Craig–Bamptonmethod.The formulation of the higher-orderCraig–Bamptonmethod is presented, and its improved

accuracy is demonstrated through various examples.

Nomenclature

F = residual flexibility matrix
K = stiffness matrix
M = mass matrix
q = modal coordinate vector
T = transformation matrix
u = displacement vector
Λ = eigenvalue matrix
λ = eigenvalue
Φ = eigenvector matrix
φ = eigenvector
Ψ = constraint mode matrix

I. Introduction

C OMPONENT mode synthesis (CMS) methods have been

widely used in finite element (FE) analysis of structural

dynamics problems. CMS methods are very effective for calculating

modal solutions (mode shapes and natural frequencies) of

complicated and large FE models, which usually consist of many

substructures [1–25]. CMS methods have also been frequently

employed to reduce the number of degrees of freedom (DOFs) of

structural dynamics models for airplane, automobile, and ship

structures [1,2].
After Hurty’s pioneering work in 1965 [3], various CMS methods

have been developed; see [4–25]. The methods have different

characteristics and advantages. Among them, the Craig–Bampton

method has been mostly widely used due to its simplicity and

robustness. In the Craig–Bampton (CB) method [4], a structural FE

model is represented by an assemblage of substructures that are

connected through a fixed interface boundary. The modal solution of

the original FE model is synthesized by selecting only dominant

modes obtained solving the substructural eigenvalue problems, and

the remaining modes not selected are designated as the residual

modes. To define the dominant and residual modes appropriately,

several mode selection methods [5–7] have been well studied.

Recently, considering the first-order effect of the residual modes,

the CBmethodwas significantly improved byKim and Lee [19]. The

new method is named the enhanced CB method (ECB), in which the

unknown eigenvalue included in the formulation is replaced with the

multiplication of the inverse matrix of the reduced mass matrix and

the reduced stiffness matrix, which are the already-known matrices,

by adopting O'Callahan’s idea [26]. Then, there is a natural question:

what happens if the second-, third-, or higher-order effects of the

residualmodes are considered?However,O'Callahan’s idea is invalid

to consider such higher-order effects.
In this study, we develop a new CMS method under the

consideration of higher-order effects of residual modes, leading to

further improvements in the accuracy of the CB method. In this

formulation, the new generalized coordinate vector is defined by

considering the additional coordinates containing the unknown

eigenvalues. Employing the concept of system equivalent reduction

expansion process (SEREP) [27], the additional unknowns are then

eliminated. We name this the higher-order CB (HCB) method.
In the following sections, we will briefly review the CB method,

define the residual flexibility, derive the formulation of the HCB

method, and present the performance of HCB method through

various numerical examples: rectangular plate, cylindrical panel,

hyperboloid shell, bent pipe, and automobile wheel problems. The

numerical results are compared to the existing CB and ECBmethods.

II. Craig–Bampton Method

In the CB method, the global (original) FE model is assembled

using Ns substructures connected through a fixed-interface

boundary; see Fig. 1. The equations of motion for free vibration

without damping are given by

Mg �ug �Kgug � 0 with Mg �
"
Ms Mc

MT
c Mb

#
;

Kg �
"
Ks Kc

KT
c Kb

#
; ug �

(
us

ub

)
(1)

whereMg andKg are the globalmass and stiffnessmatrices, andug is
the global displacement vector. The subscripts s and b represent the

substructural and interface boundary quantities, respectively, and c
represents the coupled quantities between the substructures and

interface boundary. The double dot �� � indicates the second-order

differentiation with respect to time t, i.e., d2� �∕dt2. Here,Ms andKs

are the block-diagonal matrices, and their diagonal component

matrices are the substructural mass and stiffness matrices M�i�
s and

K�i�
s (for i � 1; 2; · · · ; Ns).
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The global eigenvalue problem is defined as

Kgfφggj � �λg�jMgfφggj for j � 1; 2; · · · ; Ng (2)

in which �λg�j and fφggj are the global eigenvalue and eigenvector

corresponding to the jth global mode, respectively, and Ng is the

number of DOFs in the global FE model. Note that, in engineering

practice, only a small fraction of the total eigenpairs needs to be

considered (for j � 1; 2; · · · ; p, where p ≪ Ng).
In structural dynamics, the square root of the eigenvalue (

�����
λj

p
) and

eigenvector are interpreted as a natural frequency ωj and the

corresponding mode shape, respectively. Note that the eigenvectors

are scaled to satisfy the following mass-orthonormality condition:

fφggTi Mgfφggj � δij for i and j � 1; 2; · · · ; Ng (3)

where δij is the Kronecker delta (δij � 1 if i � j, otherwise δij � 0).
Using the eigenvectors calculated in Eq. (2), the global

displacement vector ug is represented as

ug�Φgqg; Φg�
h
fφgg1 fφgg2 · · · fφggNg

i
; qg�

8>>><
>>>:

q1
q2
..
.

qNg

9>>>=
>>>;

(4)

where Φg is the global eigenvector matrix containing the

eigenvectors fφggi, and qg is the modal coordinate vector containing

the modal coordinates qi corresponding to fφggi.
In theCBmethod, the global displacement vectorug is represented

as

ug � T0u0; T0 �
�
Φs Ψc

0 Ib

�
; u0 �

�
qs
ub

�
(5)

in which T0 and u0 are the global transformation matrix and its

generalized coordinate vector, respectively;Φs andΨc are the fixed-

interface normalmode and constraintmodematrices, respectively; Ib
is the identity matrix for the interface boundary; qs is the modal

coordinate vector corresponding to Φs; and ub is the interface

boundary displacement vector.

Note that the matrices Φs and Ψc in the global transformation

matrix T0 are expressed in a substructural matrix form as

Φs �

2
6666664

Φ�1�
s 0

Φ�2�
s

. .
.

0 Φ�Ns�
s

3
7777775
;

Ψc �

2
6666664

Ψ�1�
c

Ψ�2�
c

..

.

Ψ�Ns�
c

3
7777775

with Ψ�i�
c � −

�
K�i�

s

�−1
Kc (6)

The diagonal component matrices ofΦs in Eq. (6) can be obtained

by solving the following substructural eigenvalue problems:

K�i�
s Φ�i�

s � Λ�i�
s M�i�

s Φ�i�
s ; Φ�i�

s �
h
Φ�i�

d Φ�i�
r

i
for i � 1; 2; · · · ; Ns (7)

whereΦ�i�
s and Λ�i�

s are the substructural eigenvector and eigenvalue

matrices corresponding to the ith substructure, and the substructural
eigenvector matrix Φ�i�

s is divided into the dominant term Φ�i�
d and

residual term Φ�i�
r . The subscripts d and r denote the dominant and

residual quantities. Note that, in the substructural eigenvalue

problems, a small fraction of the total substructural eigenpairs is

calculated.
Using the substructural eigenvector matrices Φ�i�

d and Φ�i�
r , the

fixed-interface normal modes matrix Φs can be reordered as

Φs � �Φd Φr � (8)

in which Φd and Φr are the dominant and residual eigenvector

matrices, respectively, and these matrices are the block-diagonal

matrices, in which diagonal terms consist of the substructural

eigenvector matrices, Φ�i�
d and Φ�i�

r , described in Eq. (7).
Substituting Eq. (8) into Eq. (5), the global displacement vector ug

is represented as

a) b)

c)

Fig. 1 Partitioning procedures in the Craig–Bampton method: a) global FE model, b) partitioned FE models, and c) fixed-interface boundary.
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ug �
�
us
ub

�
� T0u0 with T0 �

�
Φd Φr Ψc

0 0 Ib

�
; u0 �

8<
:
qd
qr
ub

9=
;
(9)

in which qd and qr are the modal coordinates vectors corresponding

toΦd and Φr, respectively.
Truncating the residual eigenvector matrix Φr and the

corresponding modal coordinate vector qr in Eq. (9), the

approximated global displacement vector �ug is obtained:

ug ≈ �ug �
�

�us
ub

�
� �T0 �u0; �T0 �

�
Φd Ψc

0 Ib

�
; �u0 �

�
qd
ub

�
(10)

where �T0 and �u0 are the CB transformation matrix (Ng × �N0) and the

corresponding generalized coordinate vector, respectively. �N0 is the

number of DOFs in the reduced FE model; �N0 � Nd � Nb with

Nd �
XNs

i�1

N�i�
d

whereN�i�
d is the number of dominantmodes of the ith substructure, and

Nb is the number of DOFs on the interface boundary. The overbar �� �
denotes the approximated quantity. Note that the residual eigenvector

matrixΦr is simply truncated without any consideration.
Using the transformation matrix �T0 in Eq. (10), the reduced

equations of motion are

�M0
��u0 � �K0 �u0 � 0 with �M0 � �TT

0Mg
�T0; �K0 � �TT

0Kg
�T0 (11)

in which �M0 and �K0 are the reduced mass and stiffness matrices

( �N0 × �N0), respectively.
Using �M0 and �K0 in Eq. (11), the reduced eigenvalue problem is

given by

�K0f �φ0gj � ��λ0�j �M0f �φ0gj for j � 1; 2; · · · ; �N0 (12)

and the approximated eigenvector matrix �Φ0 is defined as

�Φ0 �
h
f �φ0g1 f �φ0g2 · · · f �φ0gj

i
for j � 1; 2; · · · ; �N0 (13)

where ��λ0�j and f �φ0gj are the jth approximated eigenvalue and

eigenvector.
The reduced displacement vector �u0 is then represented by

�u0 � �Φ0 �q0 (14)

where �q0 is themodal coordinate vector corresponding to �Φ0, and the

approximated global eigenvector matrix �Φg is obtained by

�Φg � �T0
�Φ0; fφggj � �T0f �φ0gj for j � 1; 2; · · · ; �N0 (15)

III. Higher-Order Craig–Bampton Method

In this section, we derive the formulation of the higher-order CB

(HCB) method, in which the residual eigenvector matrix Φr is

properly considered to construct the reduced model more accurately.
Using T0 in Eq. (9), the equations of motion in Eq. (1) are

transformed into

�
d2

dt2
M0 � K0

�
u0 � 0 (16a)

M0 � TT
0MgT0 �

2
6664

Id 0 ΦT
dM̂c

0 Ir ΦT
r M̂c

M̂T
cΦd M̂T

cΦr M̂b

3
7775;

K0 � TT
0KgT0 �

2
664
Λd 0 0

0 Λr 0

0 0 K̂b

3
775 (16b)

where M0 and K0 are the transformed global mass and stiffness

matrices, respectively, and the component matrices in Eq. (16b) are

defined by

Id � ΦT
dMsΦd; Ir � ΦT

rMsΦr (17a)

Λd � ΦT
dKsΦd; Λr � ΦT

rKsΦr (17b)

M̂c � Mc �MsΨc; M̂b � Mb �ΨT
cMc �MT

cΨc �ΨT
cMsΨc

(17c)

K̂b � Kb � KT
cΨc (17d)

Considering a harmonic response [d2� �∕dt2 � −λ], Eq. (16) can be

rewritten as

2
6664

Λd − λId 0 −λΦT
dM̂c

0 Λr − λIr −λΦT
r M̂c

−λM̂T
cΦd −λM̂T

cΦr K̂b − λM̂b

3
7775
8>><
>>:
qd

qr

ub

9>>=
>>; � 0 (18)

and, from the second row in Eq. (18), the following equation is

obtained:

qr � λ�Λr − λIr�−1ΦT
r M̂cub (19)

Substituting Eq. (19) into Eq. (9), the global displacement vector

ug can be represent as

ug �
(
us

ub

)
� T0u0 with

T0 �
2
4Φd Ψc � λΦr�Λr − λIr�−1ΦT

r M̂c

0 Ib

3
5; u0 �

(
qd

ub

)
(20)

In Eq. (20), the residual flexibility Φr�Λr − λIr�−1ΦT
r can be

expanded by using Taylor series [17,19,21,22]:

Φr�Λr − λIr�−1ΦT
r � F1 � λ1F2� · · · λi−1Fi� · · · with

Fi � ΦrΛ−i
r ΦT

r (21)

where Fi is the ith-order residual flexibility matrix.
It should be noted that, through the Neumann series expansion

theorem [28], the expansion in Eq. (21) is valid if the eigenvalue λ is
smaller than the smallest eigenvalue of Λr, which is the residual

eigenvalue matrix for substructures. In the CB method, this

expansion is generally valid because the dominant substructural

modes are selected to reflect lower modes of the original FE

model [4].
Without using the residualmodes, the residual flexibilitymatrixFi

is indirectly calculated by

Fi � K−i
s −ΦdΛ−i

d ΦT
d (22)
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It is important to note that, as the order i increases, K−i
s and

ΦdΛ−i
d ΦT

d rapidly approach one another. This results in a loss of

precision in the computation of Fi. Therefore, for the precise

calculation of Fi, the number of significant digits used must be

properly chosen. This issue will be studied through a numerical

example in Sec. IV.A.
Considering the nth-order approximation of the residual flexibility

Φr�Λr − λIr�−1ΦT
r ≈ F1 � λ1F2� · · · �λn−1Fn (23)

and substituting it into Eq. (20), the nth-order approximation of the

global displacement vector ug is given by

000

where T̂n and �un are the HCB transformation matrix (Ng × �Nn) and

the corresponding generalized coordinate vector, respectively. �Nn is

the number of DOFs in the reduced FE model ( �Nn � Nd � Nb × n),
Θ̂n is the residual mode matrix containing the nth-order residual
flexibility Fn, and ηn is the additional coordinate vector containing

the unknown eigenvalue λn. Note that the zeroth-order trans-

formation matrix (n � 0) is nothing but the CB transformation

matrix �T0 in Eq. (10).
Asmentioned already,Φd has been normalizedwith respect toMs.

On the other hand, Θ̂n has an arbitrary amplitude without

normalization. Thus, Θ̂n needs to be properly normalized. Otherwise,

Θ̂n may produce a badly scaled transformation matrix, which results

in ill-conditioned reduced stiffness and mass matrices. We normalize

each column of Θ̂n using its L2-norm [29,30]:

Θn � Θ̂nG
−1
n with Gn �

2
666664
kfθng1k2 0

kfθng2k2
. .
.

0 kfθngNb
k
2

3
777775

(25)

whereΘn is the normalized residual mode matrix containing the nth-
order residual flexibility, and fθngj is the jth column vector of Θ̂n.
For the nth-order HCBmethod, the global displacement vector ug

can be approximated by

0 0 0

where �Tn and �un are the nth-order HCB transformation matrix

(Ng × �Nn) and the corresponding generalized coordinate vector,

respectively.

Using �Tn in Eq. (26), the following reduced equations of motion

are obtained:

�Mn
��un � �Kn �un � 0 with �Mn � �TT

nMg
�Tn; �Kn � �TT

nKg
�Tn

(27)

in which �Mn and �Kn are the reduced mass and stiffness matrices

( �Nn × �Nn). Note that the reduced system in Eq. (27) has larger size

than the system reduced by the original CBmethod in Eq. (11) due to

the use of additional generalized coordinates.
The additional coordinates can be eliminated by employing the

concept of SEREP [27], which is a DOF-based reduction method

without accuracy loss. Then, the reduced system in Eq. (27) can be

further reduced, leading to the same number of equations of motion

reduced by the original CB method in Eq. (11). However, this

procedure increases computation time inevitably.
From Eq. (27), the following eigenvalue problem is obtained:

�Knf �φngj � ��λn�j �Mnf �φngj for j � 1; 2; · · · ; �Nn (28)

where ��λn�j and fφngj are the eigenvalue and eigenvector,

respectively.
We then calculate the eigenvectors up to the �N0th mode and

construct the following eigenvector matrix:

Φn �
h
f �φng1 f �φng2 · · · f �φng �N0

i
(29)

Using the eigenvectormatrix in Eq. (29), the transformationmatrix
�Tn is reduced as

~Tn � �TnΦn (30)

where ~Tn is the reduced transformation matrix of the HCB method,

the size of which is the same as that of �T0 (Ng × �N0).
Finally, the reduced matrices constructed by the HCB method are

obtained:

~Mn � ~TT
nMg

~Tn; ~Kn � ~TT
nKg

~Tn (31)

in which ~Mn and ~Kn are the reduced mass and stiffness matrices of

size �N0 × �N0.
The reduced eigenvalue problem in the HCB method is also

defined by

~Knf ~φngj � �~λn�j ~Mnf ~φngj for j � 1; 2; · · · ; �N0 (32)

where �~λn�j and f ~φngj are the approximated eigenvalues and

eigenvectors, respectively.
As the order of residual flexibility considered in the formulation

increases, the reduced system becomesmore accurate. Various orders

of the HCB methods can be defined depending on the order

Fig. 2 Rectangular plate problem (20 × 12mesh, three substructures).
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considered. Here, we define the nth-order HCB method (denoted

HCB-n), in which the nth-order HCB transformation matrix is used.

Note that HCB-0 is equivalent to the original CB method.

IV. Numerical Examples

In this section, we compare the performance of the present method

(HCB)with two previousmethods: the original CBmethod (CB) and

the enhanced CB method (ECB). Four structural problems are

considered: rectangular plate, cylindrical panel, hyperboloid shell,

and bent pipe problems. The component mode synthesis methods are

implemented in MATLAB, and computation is performed on a

personal computer (Intel Core i7-3770, 3.40 GHz CPU, 32 GB

RAM). The well-known frequency cutoff criterion [31] is adopted to

select substructural dominant modes.

To measure the accuracy of the reduced models constructed by

different methods, the following relative eigenvalue errors are

calculated:

ξj �
jλj − �λjj

λj
(33)

where ξj is the jth relative eigenvalue error, λj is the jth exact
eigenvalue calculated from the global (original) eigenvalue problem
in Eq. (2), and �λj is the jth approximated eigenvalue calculated from
the reduced eigenvalue problem. Note that rigid-body modes are not
considered in measuring the accuracy.

A. Rectangular Plate Problem

Consider a rectangular platewith free boundary in Fig. 2. Its length
L is 20.0 m, width B is 12.0 m, and thickness h is 0.08 m. Young’s
modulus E is 206 GPa, Poisson’s ratio ν is 0.33, and density ρ is
7850 kg∕m3. The plate structure is modeled by a 20 × 12mesh of the
four-node mixed interpolation of tensorial components (MITC) shell
elements [32–35] and partitioned into three substructures (Ns � 3).
The number of DOFs for this problem is 1365 (Ng � 1365).
We select 25 dominant modes (Nd � 25). The number of modes

selected in each substructure (N�k�
d ) is listed in Table 1. Using four

HCB methods (HCB-0, HCB-1, HCB-2, and HCB-3), we construct
reduced models. The four methods are implemented with two
different numbers of significant digits, namely 16 and 32.
Figures 3a and 3b present the relative eigenvalue errors obtained by

the four HCB methods using 16 and 32 significant digits,
respectively.When 16 significant digits are used for computation, the
accuracy of the HCB-3 method deteriorates due to the loss of

Table 1 Numbers of dominant modes selected for
the rectangular plate problem

N�1�
d N�2�

d N�3�
d Nd Ng

13 7 5 25 1365

a)

b)

Fig. 3 Relative eigenvalue errors for the rectangular plate problem
(20 × 12mesh, three substructures,Nd � 25): a) 16 significant digits, and
b) 32 significant digits.

a)

b)

Fig. 4 Errors for the rectangular plate problem (20 × 12 mesh, three
substructures, Nd � 25): a) relative eigenvalue errors, and b) relative
eigenvector errors.
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precision in the computation of Fi. However, when 32 significant

decimal digits are used, the accuracy deterioration phenomenon

disappears. Because 16 significant digits are usually employed in

engineering computations, this problem must be resolved in

future work.

Table 2 Relative eigenvalue errors for the rectangularplate
problem

Present

Mode number CB ECB HCB-1 HCB-2

1 9.415E-05 5.002E-07 5.005E-09 2.959E-10
2 2.728E-06 8.761E-09 1.427E-10 1.950E-11
3 4.116E-04 2.025E-07 4.866E-08 8.009E-11
4 2.340E-04 2.197E-08 1.457E-08 2.506E-11
5 5.675E-04 4.546E-08 4.259E-08 9.764E-11
6 5.586E-04 1.249E-08 4.047E-08 9.358E-11
7 1.717E-04 2.960E-09 5.021E-09 1.588E-12
8 2.912E-03 1.219E-08 2.600E-07 4.676E-10
9 4.129E-03 6.508E-08 2.054E-07 2.649E-09
10 4.914E-03 1.323E-07 4.067E-07 1.798E-09
11 2.972E-03 1.375E-07 1.792E-07 2.574E-10
12 4.866E-03 9.119E-07 7.829E-07 5.316E-10
13 9.609E-04 1.271E-07 1.477E-07 2.608E-10
14 6.775E-03 1.882E-06 6.818E-07 1.666E-10
15 1.662E-02 1.236E-05 7.281E-06 1.207E-09
16 1.306E-02 2.638E-06 1.051E-06 8.905E-10
17 5.277E-03 3.759E-06 1.610E-06 9.068E-11
18 4.522E-03 1.441E-05 8.445E-06 4.373E-10
19 1.627E-02 5.038E-05 2.083E-05 1.653E-08
20 4.090E-02 1.305E-05 6.466E-06 8.669E-10
21 6.032E-02 1.227E-04 1.002E-04 1.923E-08
22 3.275E-02 7.298E-04 4.724E-04 4.747E-08
23 7.284E-02 1.260E-04 4.135E-05 3.747E-09
24 7.013E-02 1.250E-04 3.734E-05 1.310E-09
25 6.422E-02 1.694E-04 1.021E-04 2.382E-08

R

60

1L

2L

3L

4L

5L

6L

7L

8L

1

L

2

3

4

5

6

7

Fig. 5 Cylindrical panel problem with a distorted mesh.

Table 3 Number of dominant modes selected for the
cylindrical panel problem

Case N�1�
d N�2�

d N�3�
d N�4�

d N�5�
d N�6�

d N�7�
d Nd Ng

1 2 2 2 2 4 4 4 20 1445
2 4 4 4 4 8 8 8 40 1445

a)

b)

Fig. 6 Relative eigenvalue errors for the cylindrical panel problem:
a) Nd � 20, and b) Nd � 40.

Fig. 7 Hyperboloid shell problem.
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After this point, we use only 16 significant digits in computation

due to the large amount of computation time required for 32

significant digits. Figure 4a and Table 2 present the relative

eigenvalue errors in reduced models constructed by the CB, ECB,

HCB-1, and HCB-2 methods.
Figure 4b presents the relative eigenvector errors defined using

MAC (modal assurance criterion) [36]

ζi � 1 −
jφi ⋅ �φij

kφik2k �φik2
(34)

where ζi is the ith relative eigenvector error, φi is the ith exact

eigenvector calculated from the global (original) eigenvalue problem

in Eq. (2), and �φi is the ith approximated eigenvector obtained from

the reduced eigenvalue problem.
The results in Fig. 4 show that the accuracy of theHCB-1method is

similar to that of the ECB method, and the HCB-2 method provides

further improved accuracy, in particular, in relatively higher modes.

B. Cylindrical Panel Problem

A cylindrical panel with free boundary is considered as shown in

Fig. 5. The length L is 0.8 m, radius R is 0.5 m, and thickness is

0.005 m. Young’s modulusE is 69 GPa, Poisson’s ratio ν is 0.35, and
density ρ is 2700 kg∕m3.
The cylindrical panel is modeled by a 16 × 16 distorted mesh of

finite shell elements [32–35], in which each edge is discretized in the

following ratio:

L1∶L2∶L3∶ · · · ∶L16 � 16∶15∶14∶ · · · · · · ∶1 (35)

The number of DOFs is 1445 (Ng � 1445). The FE model is

partitioned into seven substructures (Ns � 7).
We consider two numerical cases with 20 and 40 dominant modes

selected (Nd � 20 and Nd � 40). The number of modes selected in

each substructure (N�k�
d ) is listed in Table 3. Figure 6 presents the

relative eigenvalue errors obtained using the CB, ECB, HCB-1, and

HCB-2 methods. The results consistently demonstrate the improved

accuracy of the HCB methods.

C. Hyperboloid Shell Problem

We consider a hyperboloid shell structure with free boundary in

Fig. 7. The height H is 4.0 m, and thickness is 0.05 m. Young’s

modulus E is 69 GPa, Poisson’s ratio ν is 0.35, and density ρ is

2700 kg∕m3. The midsurface of this shell structure is described by

x2 � y2 � 2� z2; z ∈ �−2; 2� (36)

The hyperboloid shell structure is modeled using a 40 × 20 mesh

of the four-nodeMITC shell elements [32–35]. The number of DOFs

a)

b)

Fig. 8 Relative eigenvalue errors for the hyperboloid shell problem:
a) Nd � 24, and b)Nd � 32.

Table 4 Numbers of dominant modes selected for the
hyperboloid shell problem

Case N�1�
d N�2�

d N�3�
d N�4�

d N�5�
d N�6�

d N�7�
d N�8�

d Nd Ng

1 3 3 3 3 3 3 3 3 24 4200
2 4 4 4 4 4 4 4 4 32 4200

Thickness

Fig. 9 Bent pipe problem (four substructures).
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used is 4200 (Ng � 4200), and the FEmodel is partitioned into eight

substructures (Ns � 8).
Two numerical cases are considered with 24 and 32 dominant

modes selected (Nd � 24 and Nd � 32). The number of modes

selected in each substructure (N�k�
d ) is listed in Table 4. Figure 8

presents the relative eigenvalue errors obtained using the CB, ECB,

HCB-1, and HCB-2 methods. The results demonstrate the excellent

performance of the HCB methods.

D. Bent Pipe Problem

We consider a bent pipe structure with clamped-free boundary in

Fig. 9. The lengthsL1,L2,L3, andL4 are 12.0, 15.0, 9.0, and 18.0 m,

respectively, and the bent angle is 90 deg. DiameterD is 0.168m, and

thickness is 0.01m. Young’s modulusE is 204 GPa, Poisson’s ratio ν
is 0.35, and density ρ is 2700 kg∕m3. The bent pipe structure is

modeled using the four-node MITC shell elements [32–35]. The

number of DOFs used is 44,728 (Ng � 44; 728), and the FEmodel is

partitioned into four substructures (Ns � 4).

Two numerical cases are considered with 40 and 100 dominant
modes selected (Nd � 40 and Nd � 100). The number of modes
selected in each substructure (N�k�

d ) is listed in Table 5. Figure 10
presents the relative eigenvalue errors obtained using the CB, ECB,
HCB-1, and HCB-2 methods. From the results, the improved
accuracy of the HCB methods is well observed.

V. Computation Time

In this section, we compare the computation times required for the
CB and HCB methods. An automobile wheel with free boundary is
considered as shown in Fig. 11. The outer diameter is 0.482 m
(19 in.), Young’s modulus E is 210 GPa, Poisson’s ratio ν is 0.3, and
density ρ is 7850 kg∕m3. The automobile wheel problem is modeled
using three-dimensional solid finite elements, and the finite element
model is partitioned into four substructures (Ns � 4). The number of
DOFs used is 54,930 (Ng � 54;930).
We establish an error criterion, namely that the relative eigenvalue

errors up to the 100th mode are less than 10−4, and we investigate the
reduced models obtained by the three methods (CB, HCB-1, and
HCB-2) until satisfying the given error criterion. Figure 12a presents
the relative eigenvalue errorswhen the same size of reducedmodels is
constructed. For the three methods, we select the same number of
dominant modes,Nd � 100, as listed in Table 6. The HCB-2method
provides significantly better accuracy in the whole range of modes
compared to others. Also, we can identify that the HCB-2 method is
only satisfying the given error criterion.
In each model reduction method, the number of dominant modes

selected is determined to satisfy the criterion; see Table 7. Figure 12b
shows that all of the methods satisfy the criterion. Although the
original CB method satisfies the criterion with 7000 dominant
modes, the HCB-2 method requires only 100 dominant modes.

a)

b)

Fig. 10 Relative eigenvalue errors for the bent pipe problem:
a) Nd � 40, and b)Nd � 100. Fig. 11 Automobile wheel problem (four substructures).

Table 5 Numbers of dominant modes
selected for the bent pipe problem

Case N�1�
d N�2�

d N�3�
d N�4�

d Nd Ng

1 10 10 10 10 40 44,728
2 25 25 25 25 100 44,728
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Table 8 presents the computation times required. The results show

that the HCB-2 method produces the reduced model satisfying the

criterion with less computation time than the CB method, even

though using 70 times fewer modes.

In addition, we investigate the computation times for calculating

100 eigenpairs in the global and reduced models of the automobile

wheel problem. Table 9 shows the computation times. The reduced

model requires 3.41 s, whereas the globalmodel requires 15.95 s. The

results demonstrate the well-known advantage of reduced-order
models from the computational point of view.

VI. Conclusions

In this study, a new componentmode synthesis (CMS)methodwas
developed. The method is based on the well-known Craig–Bampton
(CB) method. Because the higher-order effects of residual modes is
considered in the formulation, it is named the higher-order Craig–
Bampton (HCB) method. In the HCB method, the unknown
coefficients in the residual flexibility are considered as additional
generalized coordinates, which are eliminated in the final
formulation.
Through numerical examples, the performance of the HCB

method was demonstrated. The numerical results were compared
with the original CB method (CB) and the enhanced CB method
(ECB). We observed that the HCB method could construct the
reduced-order models with significantly improved accuracy. The
computational efficiency of the HCB method was also tested. In
future works, it will be valuable to improve the computational
efficiency of the HCB methods.
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